
Linear Programming:
Simplex Method

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT


Learning Objectives

Understand the idea of moving between
vertices of a polytope.
Implement the simplex method.



Simplex Method

Oldest algorithm for solving linear
programs.
Still one of the most efficient.
Not quite the runtime we would like.



Formulation

Solves the optimization from starting point
formulation.



Idea
Start at vertex.



Idea
Optimum at another vertex.



Idea
Path of vertices to find optimum.



Vertices and Edges

Vertex p when n defining equations are
tight (solve with Gaussian elimination).

Relax one equation to get an edge.
Points of form p + tw , t ≥ 0.
Edge continues until it violates some
other constraint.
If v · w > 0, can follow edge to find
larger value of objective.



Vertices and Edges

Vertex p when n defining equations are
tight (solve with Gaussian elimination).
Relax one equation to get an edge.
Points of form p + tw , t ≥ 0.
Edge continues until it violates some
other constraint.

If v · w > 0, can follow edge to find
larger value of objective.



Vertices and Edges

Vertex p when n defining equations are
tight (solve with Gaussian elimination).
Relax one equation to get an edge.
Points of form p + tw , t ≥ 0.
Edge continues until it violates some
other constraint.
If v · w > 0, can follow edge to find
larger value of objective.



Pseudocode
Simplex

Start at vertex p

repeat
for each equation through p

relax equation to get edge
if edge improves objective:

replace p by other end
break

if no improvement: return p



OtherEndOfEdge

Vertex p defined by n equations
Relax one, write general solution
as p + tw (Gaussian elimination)
Relaxed inequality requires t ≥ 0
For each other inequality in
system:

Largest t so p + tw satisfies
Let t0 be smallest such t

return p + t0w.



Correctness

Theorem
If p is a vertex that is not optimal, there is
some adjacent vertex that does better.



Proof (sketch)

p at intersection of equations
E1, . . . ,En.
Can always write x · v ≤ . . . as linear
combination.
If positive coefficients, p is an optimum.
Otherwise, relax equation with negative
coefficient.



Analysis

How long does simplex take?

Must follow
path to optimum.



Analysis

How long does simplex take? Must follow
path to optimum.



Problem
What is the largest number of steps that the
simplex method might require to find the
optimum in the following situation? Assume
that points drawn higher on the screen have
larger values of the objective.



Solution

As many as 7 steps (though potentially as
few as 3).



Runtime

Runtime proportional to path length.
Path length usually pretty reasonable.
However, there are examples where path
is exponential!



Degeneracy
One technical problem:
If more than n hyperplanes intersect at a
vertex, don’t know which to relax.



Fix

Tweak equations a tiny bit to avoid these
intersections.

You can actually make this work nicely with
infinitesimal changes.
Number constraints. Strengthen first by 𝜀,
next by 𝜀2, etc.



Fix

Tweak equations a tiny bit to avoid these
intersections.
You can actually make this work nicely with
infinitesimal changes.

Number constraints. Strengthen first by 𝜀,
next by 𝜀2, etc.



Fix

Tweak equations a tiny bit to avoid these
intersections.
You can actually make this work nicely with
infinitesimal changes.
Number constraints. Strengthen first by 𝜀,
next by 𝜀2, etc.



Fix
Don’t need to actually change equations.
At degenerate point, keep track of
which n you are “really” on.
When travelling along an edge to a
degenerate corner, add the
lowest-numbered constraint at the new
corner.
Edges from degenerate corner to itself:
change “corner” if edge “improves”
objective.



Summary

Solve LP by moving between adjacent
vertices towards optimum.
Works well in practice.
Potentially exponential time.


